王闪闪,济南大学教师,山东大学计算机科学与技术专业博士,主要研究方向为人工智能、网络空间安全,现为Transactions on Information Systems (TOIS)、Journal of Biomedical Informatics (JBI)、European Association of Computational Linguistics (EACL) 、International Conference on Neural Information Processing (ICONIP)、Information Sciences 审稿人,美国计算机学会(ACM)会员,中国计算机学会(CCF)会员,SMP 2019、YSSNLP 2020、YSSNLP 2021 会议组织委员。参与国家自然科学基金一项,现主持山东省自然科学基金一项。
2022.07 — 至今
主持项目:多关联视角下的互联网黑话识别与理解, 山东省自然科学基金,项目编号:ZR2023QF096
2018.09 — 2021.08
参与项目:基于多源异构数据融合的可解释性医疗健康问答技术研究, 国家自然科学基金
2015.09 — 2018.06
主持项目:IPv6 环境下移动终端恶意软件网络行为检测模型, 赛尔网络下一代互联网技术创新项目, 项目编号:NGII20160404
主持项目:基于机器学习的移动终端恶意流量识别, 济南大学研究生创新基金项目, 项目编号:YCXS15018
Shanshan Wang, Qiben Yan, Zhenxiang Chen, Bo Yang, Chuan Zhao and Mauro Conti. Detecting Android Malware Leveraging Text Semantics of Network Flows. TIFS 2018. (SCI, 中科院分区 1 区 TOP,IF= 7.178, CCF A)
Shanshan Wang, Zhenxiang Chen, Qiben Yan, Ji Ke, Lizhi Peng, Bo Yang and Mauro Conti. Deep and Broad URL Feature Mining for Android Malware Detection. Information Sciences 2019. (SCI, 中科院分区 1 区 TOP, IF = 6.795)
Shanshan Wang, Zhenxiang Chen, Qiben Yan, Bo Yang, Lizhi Peng and Zhongtian Jia. A Mobile Malware Detection Method Using Behavior Features in Network Traffic. Journal of Network and Computer Applications 2019. (SCI, JCR 分区 1 区,IF = 6.281)
Shanshan Wang, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Jian-Yun Nie, Jun Ma and Maarten de Rijke. Coding Electronic Health Records with Adversarial Reinforcement Path Generation. SIGIR 2020. (CCF A)
Shanshan Wang, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Huasheng Liang, Qiang Yan, Evangelos Kanoulas and Maarten de Rijke. Few-Shot Electronic Health Record Coding through Graph Contrastive Learning. TKDE 2023. (CCF A under review)
Shanshan Wang, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Huasheng Liang and Qiang Yan. Paying More Attention to Self-attention: Improving Pre-trained Language Models via Attention Guiding. SIGIR 2023. (CCF A under review)
Shanshan Wang, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Jun Ma and Maarten de Rijke. Order-free Medicine Combination Prediction With Graph Convolutional Reinforcement Learning. CIKM 2019. (CCF B)
Shanshan Wang, Qiben Yan, Zhenxiang Chen, Lin Wang, Riccardo Spolaor, Bo Yang and Mauro Conti. Lexical Mining of Malicious URLs for Classifying Android malware. SecureComm 2018. (CCF C)
Shanshan Wang, Zhenxiang Chen, Qiben Yan, Ke Ji, Lin Wang, Bo Yang and Mauro Conti. Deep and Broad Learning based Detection of Android Malware via Network Traffic. IWQoS 2018. ( EI )
Shanshan Wang, Zhenxiang Chen, Lei Zhang, Qiben Yan, Bo Yang, Lizhi Peng and Zhongtian Jia. TrafficAV: An effective and explainable detection of mobile malware behavior using network traffic. IWQoS 2016. ( EI )
Shanshan Wang, Qiben Yan, Zhenxiang Chen, Bo Yang, Chuan Zhao and Mauro Conti. TextDroid: Semantics-based detection of mobile malware using network flows. INFOCOM Workshops 2017. ( EI )
Shanshan Wang, Shifeng Hou, Lei Zhan, Zhenxiang Chen, and Hongbo Han. Android Malware Network Behavior Analysis at HTTP Protocol Packet Level. ICA3PP Workshops 2015. ( EI )
Dong Cao, Shanshan Wang, Qun Li, Zhenxiang Chen, Qiben Yan, Lizhi Peng and Bo Yang. DroidCollector: A High Performance Framework for High Quality Android Traffic Collection. Trustcom/bigdatase/ispa 2016. ( EI )
Anran Liu, Zhenxiang Chen, Shanshan Wang, Lizhi Peng, Chuan Zhao, Yuliang Shi. A Fast and Effective Detection of Mobile Malware Behavior Using Network Traffic. ICA3PP 2018. ( EI )
Zhenxiang Chen, Qiben Yan, Hongbo Han, Shanshan Wang, Lizhi Peng, Lin Wang, Bo Yang. Machine learning based mobile malware detection using highly imbalanced network traffic. Information Sciences 2018. (中科院分区 1 区 TOP, IF = 6.795)
Qun Li, Zhenxiang Chen, Qiben Yan, Shanshan Wang, Kun Ma, Yuliang Shi, Lizhen Cui. MulAV: Multilevel and Explainable Detection of Android Malware with Data Fusion. ICA3PP 2018. ( EI )
Ying Pang, Zhenxiang Chen, Xiaomei Li, Shanshan Wang, Chuan Zhao, Lin Wang, Ke Ji, Zicong Li. Finding Android Malware Trace from Highly Imbalanced Network Traffic. CSE/EUC 2017. (EI)
Wang S, Chen Z, Li X, et al. Android Malware Clustering Analysis on Network-Level Behavior[M]// Intelligent Computing Theories and Application. 2017:796-807.